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Abstract— In this work we propose an approximate numerical 

method for an option pricing by the Heston model. First we 

prove the existence and uniqueness of the solution in a weighted 

Sobolev space, and then we propose the finite element and finite 

difference methods to solve the considered problem. Therefore, 

we compare the obtained results for the two approaches, with 

those by the Monte Carlo method in Broadie-Kaya. To show the 

efficiency of the numerical approaches, we use different values 

of the interest rate and show improvements in the results for the 

convergence and cputime. 

 

Subject Classification (2000): 35R60, 58J65, 60H15, 60J69, 

65C05.  

Index Terms—European Option, Stochastic Volatility, Finite 

Elements, Finite Differences.  

 

I. INTRODUCTION 

The mathematical modeling in finance is a subject that has 

attracted many researchers for the last years. Specially the 

European options, showed that its price is dependent on its 

volatility. The Black Scholes formula[5] which considered 

the volatility as a constant is clearly an assumption that does 

not reflect the reality of the market. Empirical studies show 

that the volatility is random and depends on the time variable. 

The option price is done by solving a system of two stochastic 

differential equations (SDE), one for the underlying and the 

other for its volatility, taking into account the correlation 

coefficient between the two noise sources. Hull-White [14], 

Stein & Stein[16] and Heston[12] proposed models with 

stochastic volatility that can be solved analytically. Cox and 

Ross[7] introduced these models to the dynamics of the 

underlying to explain the empirical bias exhibited by the 

Black-Scholes option pricing model. One very simple model 

that is based on a stochastic volatility is the Heston model 

which is an extended version of the Black Scholes stochastic 

one. The problem that occurs in Heston model is the non 

existence of analytical solutions and to overcome this 

problem, approximations have been derived. Many authors 

have used approaches by the use of Monte-Carlo method, but 

it has to be pointed out that this method is quite expensive. 

Here we use approximation techniques based on finite 

element and finite difference schemes and compare the 

obtained results with the Monte-Carlo method in order to 

point out the advantages and inconveniences. 

This paper is organized as follows: section 2 introduces the 

Heston model, its dynamics and the associated pricing 

problem. In section 3 we introduce the weighted Sobolev 

space to be used in the variational formulation of our problem 

and prove the existence and uniqueness of the weak solution.  
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Section 4 is dedicated to the use of the finite element and 

finite difference methods for the pricing of the European 

option, we conclude in section 5. Broadie et Al [6] have 

performed exact and approximate solutions of the SDE for the 

evaluation of the European call under the stock index S&P500 

by the Monte Carlo method. Here we propose to use the finite 

element and the finite difference methods in order to improve 

the convergence of the root mean square (RMS) error. In 

section 6 we present a comparison of the obtained results (the 

Cputime and RMS error) by the two methods with the ones by 

Broadie et Al [6] for different values of the interest rate. 

Finally, we highlight the performances of our approaches by 

comments and concluding remarks. 

.  

II. PRESENTATION OF THE MODEL 

A. Dynamic system of a European option 

We consider the following stochastic volatility model for the 

stock price under a neutral risk probability P chosen by the 

market: 
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St represents the price of the underlying;  

σ t : the volatility supposed to be stochastic;  

r : the positive constant instantaneous interest rate;  

θ : the long-term variance, when t tends to infinity; 

κ : the return speed of σt at θ; 

ρ :  the correlation coefficient between the two Brownian 

motions; where κ, θ and ν are positive constants satisfying the 

condition 1
2

2




 . The variables Wt, S   and Wt, σ are 

independent standard Brownian defined on a complete 

probability space ( ; F; P). 

B. European option price model 

In this section we write down the partial differential equation 

(PDE) modeling a European option price. For, we consider an 

European derivative on St, denoted by V (t; St; σt) with 

expiration date T, the strike K and a payoff -function  

)0,max()( KSSh TT   

The price at the time t will depend on t, on the price of the 

underlying asset St and on the volatility σt is a solution of the 

following Garman PDE [9]. 
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This equation can be written as: 
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III. ANALYTICAL STUDY 

A. Variational analysis 

Let    baU ,,0  with  ba0 . We consider 

the weighted space Sobolev  defined by 

32 ))((),,( ULu
u

s

u
s 















 

And equipped with the norm 

2

1
2

22

2 )(  










UUU

dsdudsd
u

dsd
s

u
su 


  

 









UUU

dsduudsd
u

udsd
s

u
su 




22

3

2

2

2

2

22

1
,,

This space is a Hilbert separable reflexive space, dense in  

L
2
(U), see (Theorem 4.2 in [1],[8]). 

By multiplying equation (2) by a test function v, we obtain the 

associated variational formulation  
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With u(t,s,σ)=V(T-t,s,σ). 

 

By using the Green’s formula and the Direchlet boundary 

conditions, we obtain 
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B. Main Result 

By using theorem due to Lax Miligram (see J. L. Lions[15], 

we establish the existence and uniqueness of the solution of 

problem (4). 

 Theorem 1 the Variational problem (4) admits an unique 

solution in  . 

Proof. To show this result, we need to prove the continuity 

and the coercivity or the ellipticity of the bilinear a(.,.). 

 

 For the continuity, we use the Cauchy-Schwartz's 

inequality for   ρ < 1. 

 For the coercivity, we use the Cauchy-Schwarz’s 

inequality for ρ > −1, the Poincare’s inequality and 

Young’s inequality. 

IV. NUMERICAL RESOLUTION 

In this section, we discuss two of the main techniques used for 

pricing options and present numerical simulations. We 

implement a European Call using the associated PDE (2) to 

the Heston model (1). Numerical results by the use of a finite 

element scheme using the open source software FreeFem++ 

(see www.freefem++.org) [13] and a finite  difference method 

using Matlab. 

A. Finite Element Discretization 

In this subsection we solve the variational problem for the 

pricing of a European option using finit elements method for 

the space variable, and the finit differences explicit Euler 

method for the time variable. The space Ξ is generally of 

infinite dimension, we construct by Galerkin method a 

subspace Ξh such that dimΞh < ∞. We consider a bounded 

domain, with a Lipchitz boundary  , we introduce a regular 

family (Th)h of triangulations of  , in the usual sense that : 

* For each h, the closure of   is the union of all elements of 

Th. 

* The intersection of two different elements of Th is the 

empty, a vertex or a whole edge. 

Let us first recall some standard notations: For each element E 

in a discretization 
EhT 

 denotes the set of all elements of E 

that are not contained in  : 

* The ratio of the diameter hE of any element E of Th to the 

diameter of its inscribed circle is smaller than a constant 

independent of the discretization parameter h. 

As standard, h stands for the maximum of the diameters  

h ϵ E ϵ Th. For uh, vh  , the discrete fomulation is writen as 
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Where a(uh,vh) is the analogous formulation to a(u,v) 
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The resolution of this problem using FreeFem++ with P1finite 

element, provides the following numerical results. 

For more details on finite element methods the reader is 

refered to [17]. 
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Numerical Results by the finite elements method 

We compare the results given by Heston model using the 

finite elements method described above, with those obtained 

by Broadie- Kaya[6] using the Monte Carlo method. 

 

Table 1 gives results for a European call option. The set of 

parameters for the SV model are taken from Duffie et al. 

(2000). These were found by minimizing the mean squared 

errors for market option prices for S&P 500 on November 2, 

1993. The bias column is estimated using 40 million 

simulation trials. The number of time steps for the Euler 

discretization is set to be equal to the square root of the 

number of simulation trials. 

 

Table 1: Simulation results for European call using Monte 

Carlo in [6] 

(a)Simulations with the exact method 

No of  Simul  RMC error Comp Time 

10000  0.0750  3.8 

40000  0.0373   15.2 

160000  0.0186   60.0 

640000  0.0093  239.4 

256 0000 0.0046 955.7 

 

(b)Simulations with the Euler Discretization 

No of   

Simul  

No of 

 Time 

RMS 

 error 

Comp  

Time 

10000  100  0.1725  0.2 

40000  200  0.1073  1.9 

160000  400  0.0689  15.2 

640000  800  0.0406  121.3 

256 0000 1600  0.0272  970.0 

Note that the parameters used for the experimentations are:  

S = 100, K = 100, V0 = 0.010201, κ= 6.21, θ= 0.019, 

 σv = 0.61, ρ= -0.70, r =3:19%, T = 1.0 year,  true option 

price=6.8061. 

 

Table 2: Simulation results for European call option using 

Finite Element Method 

No of 

time 

steps 

Price 

European 

Call 

RMC 

error 

Executing 

Times(sec) 

Interest 

Rate 

100 7.07989 0.387192 3.86 3.19% 

200 7.00494 0.281204 3.891 4% 

400 6.91287 0.150994 3.844 5% 

800 6.82131 0.021516 3.813 6% 

1600 6.80307 0.00429 3.907 6.2% 

 

For our numerical simulations, we choose the parameters to 

be: S =100; K = 100, κ = 2. , θ = 2.3, ν= -0.5; ρ=0.5;  

T = 1.0 year. 

We can conclude that this method is more efficient than the 

Monte Carlo method used by Broadie and Kaya [6] in terms 

of execution time by varying the interest rate. 

B. Finite differenceapproximation 

 

In this subsection we present an approximation of problem (4) 

using a finite difference scheme. For we introduce a partition 

of the bounded domain 

      maxmin,maxmin,.0  SSTT
 

 

into  subintervals  [tk; tk+1] ×[Si ×Si+1] ×[σj;σj+1 ] such that 

 

tk= kΔt,  0 k N, Si= iS,  0  i  I and σj =j σ, 0  j J  
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For simplicity, we introduce the notation 

(t k,,Si, σj) = (k,i, j), V(t k,Si, σj)  = k
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Implicite scheme 

Let X; Y be the space steps and  t are the discretization 

time step size. The European option value is in the 

cronological anti-sense, from the maturity date T. The domain 

price of the underlying and its volatility is infinite in theory, 

but numerically we take a rectangle, its center is the price of 

the underlying and its volatility  at t, for which we seak to 

evaluate the option. If the price of the underlying and its 

volatility are negative, the option value is zero. Hence the 

value of the option V(S,σ,t) is approximated by 
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The derivatives can be written as follows 
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With the initial condition   KSV i

k

ji,
and the boundary 
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C. Numerical results by the finite difference method 

In this subsection, we compare the obtained numerical results 

using the finite difference method described in the previous 
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section implemented in Matlab, with those obtained by 

Broadie-Kaya[6] using the Monte Carlo method. 
 

Table 3: Simulation results for European call option using 

Finite Difference Method 

No of 

time 

steps 

Price 

European 

Call 

RMC 

error 

Executing 

Times(sec) 

Interest 

Rate 

100 6.7272 0.1115 0.5460 3.19% 

200 6.7752 0.03437 0.5772 4% 

400 6.8413 0.0498 0.6396 5% 

800 6.9097 0.1465 0.8892 6% 

1600 6.9226 0.1647 1.2012 6.2% 

Note that the option parameters taken for simulations are:  

S =100; K = 100, κ = 0.021, θ = 17.94, ν= 0.5; T = 1.0 year. 

We remark that this method is more efficient than the Monte 

Carlo method used by Broadie and Kaya[6] in terms of  

Cputime. These tests confirm that the finite difference method 

is faster for different values of the interest rate when it is less 

than 5%. 

D. Comments the numerical results 

In this subsection we compare the results obtained by the two 

methods: the Cputime and the RMS error for different values 

of the interest rate. 

 

Execution Time 

Comparison of the Execution Time between F.E.M & F.D.M. 

 

Table 4: Cputime 

Interest Rate F.E F.D 

3.19 3.86 0.6460 

4 3.891 0.5772 

5 3.844 0.6396 

6 3.813 0.8892 

6.2 3.907 1.2012 

 
Figure 1: Cputime 

 

By comparing the Cputime for the two methods, we note that 

the finite difference method is faster than the finite element 

method (see Figure 1) 

RMS error 

Comparison of RMS error between F.E.M & F.D.M 

 

Table 5: RMS error 

Interest Rate F.E F.D 

3.19 0.387192 0.1115 

4 0.281204 0.0437 

5 0.150994 0.0498 

6 0.0215161 0.1465 

6.2 0.00429025 0.1647 

 

 
Figure 2 : RMS error 

Figure 2 shows that the finite element method is more 

accurate than the finite difference one following the different 

values of the interest rate, when it is less than 5. 

V. CONCLUSION 

The aim of this paper is the pricing of the European option, by 

a diffusion with a stochastic volatility, where the volatility 

follows a Heston model. We proved the existence and 

uniqueness of the weak solution in a weighted Sobolev space. 

We present results for a comparison between two methods, 

the finite element and the finite difference methods for some 

values of the interest rate. 

The obratined results show that the finite element method is 

more accurate compare to the finite differences in terms of 

RMS error when the interest rate is less than 5 (Table 5 and 

Figure 2), however in terms of Cputime the latter method is 

less expensive than the first one (see Table 4 and Figure 1). 

Furtheremore a comparison with the Monte Carlo Method 

used by Broadie et Al [6] is presented and the obtained results 

lead us to conclude that the two proposed approaches are 

faster and more accurate for different values of the interest 

rate (See Tables 1,2,3,4 & 5 and Figures 1 & 2). 

Finally we have to point out that our results are closer to the 

true market value of the European option exercised under the 

stock index S&P500 on November 2, 1993. 
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